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Abstract: Single-electron transfer and hydrogen atom transfer pathways have been proposed to account
for the cytochrome P450-catalyzed R-carbon oxidations of amines. With the aid of electrochemistry-
electrospray ionization mass spectrometry, the electrochemical potentials required for the one-electron
oxidations of N-methyl- and selected N-cyclopropyl-4-phenyl-1,2,3,6-tetrahydropyridinyl derivatives and the
chemical fates of the resulting aminyl radical cations have been investigated. Comparison of the results of
these studies with those observed in the corresponding enzyme catalyzed oxidations suggests that aminyl
radical cations are not obligatory intermediates in the cytochrome P450-catalyzed R-carbon oxidations of
this class of substrates.

Introduction

The mechanism by which amines undergo cytochrome P450
(cP450)-catalyzedR-carbon oxidation has been1 and continues
to be2 a topic of interest. Scheme 1 summarizes two pathways
that have been proposed for this overall two-electron oxidation.
The single-electron transfer (SET) pathway involves an initial
transfer of one electron from the nitrogen lone pair of the
substrate (1) to the cP450-activated iron-oxo system (FeVdO
f FeIVdO).1a-e,2a,c,f,gProton transfer from the resulting aminyl
radical cation1•+ (coupled to FeIVdO f FeIIIsOH) is proposed
to lead to the carbon radical2•. The second one-electron
oxidation proceeds via radical recombination (oxygen rebound)
to give the FeIII resting state of cP450 and an equilibrium
mixture of theR-carbinolaminium species3H+ and iminium

species4+. The second pathway, involving an initial hydrogen
atom transfer (HAT) from theR-carbon atom of the substrate
to the iron-oxo system (FeVdO f FeIII sOH), gives carbon
radical intermediate2• without passing through the aminyl
radical cation1•+.2b,d,e

The cP450 mechanism-based inactivator properties ofN-
benzylcyclopropylamine (5) are consistent with the SET path-
way (Scheme 2).3 The strained cyclopropyl group of the aminyl
radical cation5•+, when in the bisected conformation,4 is
proposed to open to generate the distonic radical cation6•+.
This primary carbon radical is thought to form a covalent adduct
(7H+) with an active site functionality of the enzyme. A critical
experiment in support of this proposal established that the
1-methylcyclopropyl analogue8, which cannot undergo the
HAT reaction, still inactivated the enzyme.1c,d This behavior
may be rationalized by a reaction sequence (8 f 8•+ f 9•+ f
10H+) analogous to that proposed forN-benzylcyclopropy-
lamine (5 f 5•+ f 6•+ f 7H+). Based on these results, the
cP450-catalyzed oxidations of amines should proceed via the
sequence1 f 1•+ f 2• f 3H+ (Scheme 1).

Recent evidence challenging SET as an exclusive pathway
for the cP450-mediated oxidations of amines has been provided
from studies onN-cyclopropyl-p-chloroaniline derivatives bear-
ing N-methyl andN-isopropyl groups.5 The salient outcomes
of this study include the following: (1) replacement of the C(1)-
cyclopropyl proton with a methyl group shifts the product
composition from a mixture of theN-dealkylated andN-
decyclopropylated metabolites to theN-dealkylated metabolites
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exclusively; (2) replacement of the C(1)-cyclopropyl proton with
a deuteron leads to a shift in product composition to favor
N-dealkylated metabolites (kH/kD ) 3.1( 0.1); and (3) a model
SET reaction, using Fe3+(Phen)3(PF6

-)3 as a one-electron
oxidant, overwhelmingly favors, in all cases, theN-decyclo-
propylation pathway which presumably proceeds via ring opened
intermediates. The authors conclude that an SET mechanism
can account for these observations only if the rate of the iso-
tope sensitiveR-carbon deprotonation of the aminyl radical
cation is much faster than the rate of opening of the cyclopropyl
ring.

Results from Hanzlik’s laboratory have provided direct
evidence that cP450-catalyzed oxidations of amines may proceed
via an HAT pathway.6 In this study cyclopropanone hydrate
(14) was characterized as a cP450-generated metabolite of the
13C-labeledN-methyl-N-phenylcyclopropylaminyl analogue11.
Convincing evidence to support the intermediacy of the HAT
carbon radical12• included the observation that theR-methyl
analogue15 did not undergo cP450-catalyzed decyclopropyla-
tion. Radical recombination of12• with the heme-stabilized
hydroxyl group followed by cleavage of the resultingR-carbino-
lamine13 led to cyclopropanone hydrate (14) that was identified
by 13C NMR spectroscopy (Scheme 3). Thus, 1-methylcyclo-
propylaminyl substrates have provided evidence supporting both
the SET and the HAT mechanism.

Studies from our laboratory have focused on the monoamine
oxidase-7 and cP450-catalyzed8 R-carbon oxidations of various
1,4-disubstituted 1,2,3,6-tetrahydropyridinyl derivatives. Mem-
bers of this class of compounds, including the parkinsonian
inducing neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyri-
dine [MPTP (16)], are biotransformed via ring allylicR-carbon
oxidation. In the case of MPTP, the pyridinium metabolite18+,
formed via the dihydropyridinium intermediate17H+, is thought
to mediate the neurodegenerative properties of the parent
compound.9 As part of these studies we have examined the
cP450-mediated oxidation of 1-cyclopropyl- (19), trans-1-(2-
methylcyclopropyl)- (20a),10 andtrans-1-(2-phenylcyclopropyl)-
(21) 1,2,3,6-tetrahydropyridine with phenobarbital induced rat
liver microsomes and expressed forms of cP450 3A4 and cP450
2D6.11 All three preparations converted these substrates to the
corresponding dihydropyridinium and pyridinium metabolites
(19 f 22H+ f 25+; 20af 23H+ f 26+; and21 f 24H+ f

(6) (a) Shaffer, C. L.; Harriman, S.; Koen, Y. M.; Hanzlik, R. P.J. Am. Chem.
Soc. 2002, 124, 8268. (b) See also Bissel, P.; Castagnoli, N., Jr.; Penich,
S. Bioorg. Med. Chem.2005, 13, 2975.
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1992, 35, 4165. Wang, Y. X.; Castagnoli, N., Jr.J. Med. Chem. 1995, 38,
1904. Yu, J.; Castagnoli, N., Jr.Bioorg. Med. Chem. 1999, 7, 2835.
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27+) and to the 4-phenyl-1,2,3,6-tetrahydropyridinium product
30H+. Although the fates of the cyclopropyl group present in
19 and20awere not determined, the phenylcyclopropyl group
present in21was converted, at least in part, to cinnamaldehyde
(32). We have interpreted the cP450-catalyzed conversion of
21 to 30H+ + 32as evidence supporting the SET pathway since
a plausible sequence leading to these products would proceed
via 21•+ f 28•+ f 29+ f 30H+ + 31 and31 f 32 as shown
in Scheme 4. It is not known if this is a route unique to21
and/or if decyclopropylation of19 and20aalso proceed via an
analogous SET pathway.

We also have examined the oxidation of MPTP, the 1-cy-
clopropyl- (19) and related 1-cyclopropyl-4-substituted 1,2,3,6-
tetrahydropyridinyl analogues of MPTP in acetonitrile by the
1-electron oxidant Fe3+(Phen)3(PF6

-)3.12 MPTP was converted
rapidly and exclusively to the pyridinium species18+ (see
Scheme 4) whereas none of the 1-cyclopropyl analogues
underwent ring allylicR-carbon oxidation.

It is difficult to accommodate all of the experimental results
summarized above exclusively in terms of the SET or the HAT
mechanism. The conversion of thetrans-1-(2-phenylcyclopro-
pyl) analogue21 to cinnamaldehyde (32) is best rationalized
by the SET mechanism, while the conversion ofN-methyl-N-
phenylcyclopropylamine (11) to cyclopropanone hydrate (14)
is best rationalized in terms of the HAT pathway. In the present
report we describe the results of our attempts to characterize
by electrospray ionization/mass spectrometry (ESI/MS) the fate
of aminyl radical cations that have been generated by electro-
chemical (EC) oxidation. If SET is an obligatory pathway for
the cP450-catalyzed oxidations of tertiary amines, then one
might anticipate that the electrochemically generated cyclopro-
pylaminyl radical cations would be converted, at least to some
extent, in this model reaction to the corresponding dihydropy-
ridinium products that are formed in the enzyme-catalyzed reac-
tions. On-line monitoring by ESI/MS of substrate disappearance

also provides an opportunity to investigate the influence of
N-substituents on the electrochemical potential required to form
aminyl radical cations. In contrast to the Fe3+(Phen)3(PF6

-)3

model reactions, these EC oxidations are carried out in aqueous
MeOH, providing an opportunity to observe single-electron
chemical events under protic-polar conditions that resemble
more closely those present in an enzyme active site. As with
any model reaction, however, one must assume that restrictions
imposed by the enzyme active site do not exclude chemical
events that are observed in the solution reaction.

Results and Discussion

Studies of the on-line coupling of electrochemistry and mass
spectrometry in the field of drug metabolism date back to 1986.13

The evolution of these studies has led to instrumentation that
provides on-line coupled EC-ESI/MS capabilities with consider-
able versatility and sensitivity.14 In the present study, the EC-
ESI/MS technique has been exploited to provide information
on the fates of the aminyl radical cations generated by the one-
electron oxidations of theN-substituted tetrahydropyridinyl
derivatives16, 19, 20a, and21. The procedure involves pumping
a solution of the substrate through a porous graphite electro-
chemical cell while the potential of the cell is ramped from 0
to 1500 mV. The perfusate then enters the mass spectrometer.
The positively charged species (MH+ and M+) of the substrates
and oxidation products generated under ESI conditions are
monitored on-line by MS, and mass voltammograms (MVs) are
constructed by plotting the resulting integrated ion intensities
vs potential. The oxidation products generated by passing a
solution of the substrate molecule through the electrochemical
cell held at an appropriate constant potential can be characterized
by LC-ESI/MS and product ion spectral analyses. Additionally
the influence of substituents on the oxidation potentials of the

(12) Franot, C.; Mabic, S.; Castagnoli, N., Jr.Bioorg. Med. Chem. 1998, 6,
283.

(13) Hambitzer, G.; Heitbaum, J. Anal. Chem. 1986, 58, 1067. Getek, A.
Proceedings of the 34th ASMS Annual Conference on Mass Spectrometry
and Allied Topics, Cincinnati, 1986.
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substrates can be estimated by comparing the potentials at which
the ion intensities (MH+ values) of the starting substrates start
to decline.

The MVs obtained with MPTP are shown in Figure 1. At
approximately 700 mV the intensity of the MH+ ion of MPTP
at m/z 174 started to decrease and was replaced by a species at
m/z 172. At higher potentials, a weak signal was detected at
m/z 170. An ion atm/z 160 also was present at trace levels.
Comparison of the LC-ESI/MS tracings and product ion spectra
(PIS) obtained of the compounds generated following oxidation
of MPTP at 950 mV with synthetic standards confirmed that
MPTP had undergone oxidation first to the dihydropyridinium
species17H+ (m/z 172) that subsequently was converted at
higher potentials to the pyridinium species18+ (m/z 170). The
structure of the compound present at trace levels was shown to
be theN-demethylated secondary aminium species30H+ (m/z
160, Scheme 5).

These results are rationalized by the pathways shown in
Scheme 5 in which the one-electron oxidation product16•+ of
MPTP undergoes preferentialR-carbon deprotonation at the C-6
allylic position to give theR-carbon radical33•. Following a
second one-electron oxidation,33• is converted to the dihydro-
pyridinium species17H+. A minor route proceeds via depro-
tonation of the methyl substituent of16•+ to give carbon radical
34• that is oxidized to the exocyclic iminium intermediate35+.
Hydrolytic cleavage of35+ generates the secondary aminium
species30H+. The predominance of allylic ringR-carbon
oxidation reflects the greater acidity of the allylic C-6 proton
relative to theN-methyl proton of the aminyl radical cation16•+.
The gas-phase energies for the formation of the corresponding
conjugate bases33• and34• from 16•+, when calculated at the
Unrestricted Hartree-Fock (UHF) level of theory15 using the
6-31G* basis set, gave∆E (34•) - ∆E (33•) ) 29.6 kcal/mol.16

The corresponding values when calculated by density functional
theory (DFT)17 using the pBP18 model with the DN** basis set
and the SVWN19 model with the DN** basis set were 24.5 and

25.5 kcal/mol, respectively. The results of all three computa-
tional methods predict the selective ring allylic oxidation
observed in this experiment. These results are consistent with
the SET pathway for the enzyme-catalyzed oxidation of MPTP
to its dihydropyridinium species17H+, a known rat cP450 1A1
metabolite of MPTP.8 On the other hand, the human cP450 2D6-
catalyzedR-carbon oxidation of MPTP leads principally to the
N-demethylated metabolite30H+,20 a product that cannot be
readily rationalized by the SET pathway.

The MVs obtained with theN-cyclopropyl analogue19show
that the intensity of the parent ion atm/z 200 starts to decline
at about 450 mV and is replaced by a species detected atm/z
160 (Figure 2). This product undergoes further oxidation to give
a species detected atm/z158. A signal too weak to be observed
in Figure 2 also was detected at higher potentials atm/z 156.21

A careful search for ions atm/z 198 and 196, corresponding to
the MH+ values for the known dihydropyridinium and pyri-
dinium species22H+ and 25+, respectively, failed. When
subjected to EC-MS analysis both22H+ and25+ proved to be
stable at up to 1000 mV. Consequently, it is likely that these
two compounds would have been detected had they been formed
following the one-electron oxidation of19. The LC-ESI/MS
and PIS obtained from the reaction mixture generated at 500
mV confirmed the structures of theN-decyclopropylated
secondary aminium species30H+ (m/z160), the corresponding
dihydropyridinium species41H+ (m/z158),22 and the pyridinium
species42+ (m/z 156).

These results may be rationalized by assuming the rapid ring
opening of the electrochemically generated cyclopropylaminyl
radical cation19•+ to yield the distonic radical cation37•+

(Scheme 6). A second one-electron oxidation of37•+ leads to
the eniminium species38+ that undergoes hydrolytic cleavage
to form theN-dealkylated product30H+ and an unidentified
product equivalent to a C3H4O unit. Compound30H+ proved
to be unstable at 500 mV and underwent oxidation to the cor-
responding dihydropyridinium species41H+ that, in turn, was
oxidized, at higher potentials, to the pyridinium species42+.

(14) Volk, K. J.; Yost, R.; Brajter-Toth, A.Anal. Chem.1992, 64, 21A. Zhou,
F.; Berkel, G. J. V.Anal. Chem.1995, 67, 3643. Liu, X.; Cole, R. B.Anal.
Chem.1997, 69, 2478. Regino, M. C. S.; Brajter-Toth, A.Anal. Chem.
1997, 69, 5067. Diehl, G.; Liesener, A.; Karst, U. Analyst2001, 126, 288.
Jurva, U.; Wikstro¨m, H. V.; Weidolf, L.; Bruins, A. P.Rapid Commun.
Mass Spectrom. 2003, 17, 800. Jurva, U.; Wikstro¨m, H. V.; Bruins, A. P.
Rapid Commun. Mass Spectrom. 2002, 16, 1934. Permentier, H. P.; Jurva,
U.; Barroso, B.; Bruins, A. P.Rapid Commun. Mass Spectrom.2003, 17,
1585.

(15) Hartiharan, P. C.; Pople, J. A.Theor. Chim. Acta1973, 28, 213.
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(18) Becke, A. D.Phys. ReV. A 1988, 38, 3089. Perdew, J. P.Phys. ReV. B

1986, 33, 8822.
(19) Vosko, S. H.; Wilk, L.; Nusair. M.Can. J. Phys.1980, 58, 1200.

(20) Di Monte, D.; Shinka, T.; Sandy, M. S.; Castagnoli, N., Jr.; Smith, M. T.
Drug Metab. Dispos.1988, 16, 250. Narimatsu, S.; Tachibana, M.;
Masubuchi, Y.; Suzuki, T.Chem. Res. Toxicol.1996, 9, 93. Coleman, T.;
Ellis, W.; Martin, I. J.; Lennard, M. S.; Tucker, G. T.J. Pharmacol. Exp.
Ther.1996, 277, 685.

(21) It should be noted that additional oxidation products at higher masses also
were detected. The characterization of these compounds, as well as those
observed with the other cyclopropylamines discussed in this paper, will be
reported separately.

(22) A synthetic sample of41H+ was not available. The structure assignment
was made by showing that the PIS of the EC generated ion atm/z 158 was
identical to the corresponding ion generated by the EC oxidation of
4-phenyl-1,2,3,6-tetrahydropyridine (30).

Figure 1. Mass voltammograms of MPTP (16H+) and its oxidation
products17H+ and18+. Figure 2. Mass voltammograms of the cyclopropyl analogue19H+ and

its oxidation products30H+ and41H+. For clarity, the intensity of the ion
at m/z 200 has been divided by 2.
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An alternative proposal to account for theN-decyclopropy-
lation pathway involves deprotonation of the cyclopropylaminyl
radical cation19•+ to give39•, a radical intermediate analogous
to that proposed by Hanzlik to account for the cP450-mediated
formation of cyclopropanone hydrate (14) from N-methyl-N-
phenylcyclopropylamine (Scheme 3). In the present case, a
second one-electron transfer and hydrolytic cleavage of the
resulting iminium intermediate40+ would generate30H+ and
cyclopropanone hydrate (14). This alternative pathway (19•+

f 39• f 40+ f 14 + 30H+), however, is not favored
energetically. The calculated differences in gas-phase energies
of the allylic radical 36• (the conjugate base of the allylic
C(6)-H acid of19•+) and the corresponding cyclopropylmethide
radical39• (the conjugate base of the cyclopropylmethide C-H
acid of19•+) are 31.9 (UHF/6-31G*), 27.8 (DFT/pBP/DN**),
and 30.0 kcal/mol (DFT/SVWN/DN**), all in favor of36•.
Consequently, the preference for the ring allylic carbon oxida-
tion, a pathway not observed in this experiment, should be
favored by orders of magnitude over oxidation of the cyclo-
propylmethide carbon.

The MVs obtained with thetrans-1-(2-methylcyclopropyl)
analogue20aandtrans-(2-phenylcyclopropyl) analogue21also
show that the loss of the parent ion is linked to the formation
of the secondary aminium species30H+ that, subsequently, is
converted to the dihydropyridinium species41H+. The pyri-
dinium species42+ also is observed at higher potentials.

Scheme 4 above presents the two cP450-mediated oxidation
pathways for19, 20a, and 21. One pathway leads to the
dihydropyridinium (22H+, 23H+, and24H+) and pyridinium
(25+, 26+, and27+) metabolites and the other to the secondary
aminium product30H+ and, in the case of21, to cinnamalde-
hyde. The results obtained with the EC-ESI/MS study show that
all three cyclopropylamines are converted principally to the
secondary aminium product30H+, presumably via the corre-
sponding cyclopropylaminyl radical cations, distonic radical
cations, and eniminium species (Scheme 7). The expected ion
corresponding to the MH+ value of cinnamaldehyde, which has
a poor ionization efficiency, was not detected in the EC-ESI/
MS study of the phenylcyclopropyl analogue21. Confirmation
of the formation of cinnamaldehyde in this reaction, however,
was obtained by LC-diode array analysis of the reaction mixture
generated by the oxidation of21at 120 mV. The retention times
in two different mobile phases (2.16 and 3.25 min) and the UV
spectrum (λmax278 nm) of the product obtained with the reaction
mixture were identical to those observed with a synthetic
standard. Consequently, the proposed EC reaction pathway for
21 (21 f 21•+ f 28•+ f 45+ f 30H+ + 32) is analogous to
the cP450-catalyzed pathway (21 f 21•+ f 28•+ f 29+ f
30H+ + 32) proposed to account for the conversion of21 to
30H+ + 32.

Although ions corresponding to the pyridinium species25+,
26+, and27+ were not observed in the mass spectra of the EC

Scheme 5

Scheme 6
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generated oxidation products derived from19, 20a, and 21,
respectively, a weak signal atm/z 274, the nominal mass for
the phenylcyclopropyldihydropyridinium species24H+, was
detected. An even weaker signal was observed atm/z 212
corresponding to the methylcyclopropyldihydropyridinium spe-
cies 23H+. Attempts to synthesize24H+ were initiated in an
effort to determine if this cyclic iminium species is formed
following electrochemical one-electron oxidation of21.

The syntheses of 1,4-disubstituted dihydropyridinium deriva-
tives have been achieved by treatment of the corresponding
N-oxide intermediates with trifluoroacetic anhydride (TFAA).11a

This reaction (Scheme 8) was attempted with the diastereomeric
mixture of N-oxides (46/47) obtained by treatment of21 with
m-chloroperoxybenzoic acid (m-CPBA). ESI/MS of the product
displayed the expected MH+ ion atm/z 274. Upon standing in
aqueous MeOH containing 10 mM ammonium formate, how-
ever, this ion was replaced with an ion atm/z 160. Comparison
of the PIS of this ion with the PIS of a synthetic standard
established its structure as the 4-phenyl-1,2,3,6-tetrahydropy-
ridinium species30H+. Furthermore, LC diode array analysis
established the presence of cinnamaldehyde (32) in the mixture.
This behavior was not consistent with the dihydropyridinium

compound24H+ but was consistent with the eniminium species
45+, the putative intermediate in the EC oxidation of the
tetrahydropyridinyl analogue21. The1H NMR spectrum of the
analytically pure product confirmed this speculation. The
spectrum was readily interpreted in terms of a product consisting
of a 3/2 mixture of the cis/trans eniminium isomers45+/48+.
Diagnostic signals (arbitrary configurational assignments) are
shown in Scheme 8. As observed in the ESI/MS and diode
array analyses, addition of water to a DMSO-d6 solution of the
product resulted in the quantitative hydrolysis of the eniminium
derivatives to the secondary aminium species30H+ and
cinnamaldehyde (32). Finally, treatment of45+/48+ with NaBH4

gave the expected tertiary amine49 that was synthesized
independently from the secondary amine30 and cinnamyl
bromide (50). The coupling constant for the olefinic protons (J
) 20 Hz) corresponded to the trans structure49 which rules
out a cis configuration for this double bond in the eniminium
mixture. GC-EI/MS analysis of the reduction reaction mix-
ture showed a single peak and confirmed that none of the
isomeric tetrahydropyridinyl compound21, which would be
formed by reduction of the dihydropyridinium species24H+,
was present.

Scheme 7

Scheme 8
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The PIS (MH+, m/z 274) of the synthetic diastereomeric
mixture 45+/48+ and of the product formed by EC oxidation
of 21-d0 (presumably the same cis/trans mixture) were es-
sentially identical. Two principal fragment ions,m/z144 (100%)
and 115 (60%), were observed in these spectra (Scheme 9).
Initial fragmentation to givei+-d0 (m/z 144) is accompanied by
the neutral loss of 2-phenyl-1,3-butadiene (A). Subsequent
neutral loss of methyleneimine (B) from the phenyl ethynyl
carbinyl cationi+-d0 givesii+ (m/z115). The PIS obtained with
45+-d2 (m/z276) generated in the EC-ESI/MS of21H+-d2 (m/z
278) confirmed these assignments.23 As required, the mass of
the ion atm/z 144 (i+-d0) shifted tom/z 145 (i+-d1), while the
mass ofii+ at m/z 115 was unchanged. These results establish
unambiguously the assignment of the species with MH+ at m/z
274 observed at low levels in the EC-ESI/MS of21 as the
hydrolytically unstable eniminium intermediates45+/48+ that
are formed by the pathway presented in Scheme 7. Although
we could not obtain a pure sample of the corresponding
methyleniminium species44+, the PIS of the EC-generated
species (m/z 212) from the methylcyclopropyl analogue20a
gave a single major fragment ion atm/z 82 (Scheme 9). This
ion corresponds in mass to the fragment ion atm/z144 observed
in the PIS of synthetic45+/48+ and the EC-generated eniminium
species derived from the phenylcyclopropyl analogue21. Unlike
the ion atm/z 144, the ion atm/z 82 does not fragment further
to lose methyleneimine (B), presumably because its structure
is the stable dienylmethyleniminium speciesiii +. These results
provide convincing evidence that the cyclopropylaminyl radical
cations formed following one-electron oxidation of cyclopro-
pyltetrahydropyridinyl derivatives undergo rapid ring opening
to the corresponding distonic radical cations. No evidence could
be obtained for the ringR-carbon oxidation pathway.

From a review of the redox potentials of the four tertiary
amines examined in this study it is evident that the ease of EC
oxidation is dependent on theN-substituent. To obtain a more
accurate estimate of the initial potentials at which each
compound undergoes EC oxidation, the MVs were obtained
using a mixture containing equimolar concentrations of all four
compounds (Figure 3).

TheN-methyl compound (16) undergoes initial oxidation at
a higher potential (650 mV) than does theN-cyclopropyl

analogue19 (350 mV). Thetrans-2-methylcyclopropyl analogue
20aundergoes initial oxidation at an even lower potential (240
mV), while thetrans-2-phenylcyclopropyl analogue21 under-
goes initial oxidation at the lowest potential (40 mV). Gas-phase
energy calculations provide insight into the factors responsible
for these shifts in redox potential. The vertical ionization
potentials (IPv) of the substrates were calculated at the Hartree-
Fock (HF)16 and UHF levels of theory with the 6-31G* basis
set. These calculations show that, when no nuclear motion is
allowed, the energies required to remove one electron from the
nitrogen lone pairs are similar for all four compounds (Table
1). On the other hand, the corresponding adiabatic ionization
potentials (IPa), calculated for the geometry-optimized aminyl
radical cations, show a clear trend [6.33 (16), 6.03 (19), 5.91
(20a), and 4.74 eV (21)] that is consistent with the observed
redox potentials. Perhaps even more informative are the
calculated bond distances of the cyclopropylaminyl radical
cations after geometry optimization (Table 1). Modest increases
in the lengths of the C1-C2 bond are observed for the aminyl
radical cations19•+ and20a•+ derived from the proteo (19) and
methyl (20a) analogues. In the case of the phenyl analogue21,
the C1-C2 bond length of the putative phenylcyclopropyl
radical cation21•+ is calculated to be 2.43 Å. These results
suggest that the lower redox potentials associated with the one-
electron oxidations of the cyclopropylaminyl analogues19 and
20a compared to theN-methylaminyl analogue16 reflect
lowered activation energies leading to the corresponding cy-
clopropylaminyl radical cations19•+ and20a•+ that are achieved
through partial rupture of the cyclopropyl C1-C2 bonds and
release of ring strain energy. In the case of the phenylcyclo-

(23) The absence of an ion atm/z 275 [corresponding to the dihydropyridinium
product that would be generated byR-carbon oxidation of21 with loss of
the C(6) hydrogen atom] is consistent with the radical cation21•+

undergoing ring opening exclusively.

Scheme 9

Figure 3. Mass voltamograms for16H+, 19H+, 20aH+, and21H+ obtained
with a mixture of the substrates. For clarity, the ion intensities have been
normalized to approximately 100% at 0 mV.
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propyl analogue21, there appears to be no energy barrier for
ring opening; instead,21proceeds directly to the distonic radical
cation28•+ without passing through a discrete cyclopropylami-
nyl radical cation intermediate. These data provide a rationale
to account for the observed fates of the four compounds
following EC oxidation. They also support the proposal that
the cP450-catalyzed ringR-carbon oxidations of cyclopropy-
lamines19, 20a, and21 do not proceed via the SET pathway.

Summary and Conclusion

The results presented in this paper are consistent with those
of several recent studies on the chemistry and metabolism of
cyclopropylamines. Although EPR signals attributable to cy-
clopropylaminyl radical cations are observed in frozen matrices
at temperatures below 130 K,24 compelling evidence argues that
these highly unstable species ring open at extremely rapid rates
at more elevated temperatures.5,12,25 Computational analyses
support this behavior. Removal of an electron from the lone
pair of cyclopropylamine is accompanied by ring opening.26

Accordingly, the aminyl radical cation of cyclopropylamine is
not located in an energy minimum in the radical cation potential
energy surface. The calculations reported in the present paper
indicate partial ring opening of the aminyl radical cations derived
from the cyclopropylaminyl and methylcyclopropylaminyl
analogues19 and 20a and complete rupture of the ring upon
one-electron loss from the phenylcyclopropyl derivative21.

We conclude that aminyl radical cations are unlikely to be
obligatory intermediates in the cP450-catalyzed ringR-carbon
oxidations ofN-cyclopropyl cyclic tertiary allylamines. Rather,
an HAT pathway, analogous to that proposed for the oxidative
N-decyclopropylation ofN-methyl-N-phenylcyclopropylamine
(11, Scheme 3), will be preferred. The catalytic pathway(s)
accounting for the cP450-catalyzedR-carbon oxidation of other
amine substrates remain(s) to be determined.

Experimental Section

General Methods. Compounds16•HCl, 30•HCl, and 32 were
purchased from Aldrich. Compounds17H+‚ClO4

-,27 18+•I -,28 19H+‚-

HOOCCOO-,2921H+‚HOOCCOO-,11b22H+‚ClO4
-,11aand25+‚ClO4

-27

and 46/4711b were synthesized as described previously. THF was
distilled from sodium and benzophenone. Proton and13C NMR spectra
were recorded on a JEOL 500-MHz spectrometer. A 400 MHz INOVA
spectrometer was used for the NOE experiment. The HPLC analyses
of cinnamaldehyde were performed on an Agilent 1100 HPLC system
equipped with a UV/vis diode array detector (G1328B) using a Zorbax
XDB-C8 column (4.6 mm× 150 mm, 5µm) with an XDB-C8 guard
column filter (2.1 mm× 12.5 mm, 5µm) and acetonitrile/water (56:
44 and 30:70) as the mobile phase at a flow rate of 1 mL/min and an
injection volume of 20µL. The GC-EI/MS analysis was performed on
a Hewlett-Packard 6890 gas chromatography fitted with an HP-1
capillary column (15 m× 0.2 mm i.d., 0.33 mm film thickness), which
was coupled to a Hewlett-Packard 5870 mass-selective detector. Data
were acquired using an HP 5970 Chemstation.

Molecular Modeling Calculations. Molecular modeling calculations
were carried out using MacSpartan Pro software (Version 1.0.4; Wave
function, Irvine, CA). Geometry optimizations were initiated at the
semiempirical AM1 level of theory. Final geometry optimizations and
energy calculations were carried out at HF or, for radicals, at UHF
level of theory with the 6-31G* basis set. The convergence criteria for
geometry optimizations were the maximum gradient components
reaching<0.002 hartree. The differences in energies of the C-6 allylic
radicals33• [from MPTP (16)] and36• (from the cyclopropyl analogue
19) vs the corresponding methylene radical34• and the cyclopropyl-
methide radical39• were estimated by deleting the appropriate proton
from each of the radical cations16•+ and 19•+, respectively, and
calculating the energy of the resulting neutral radicals following
geometry optimization. Single-point energies of the HF or UHF
geometry-optimized molecules also were calculated using the DFT/
pBP and DFT/SVWN models with the DN** numerical basis set.
Vertical ionization potentials (IPv) were calculated as follows: the
energies of the geometry-optimized amines16, 19, 20a, and21 were
calculated. Single-point energy calculations were carried out on the
radical cations (16•+, 19•+, 20a•+, and21•+) using the same geometry
as the corresponding amines. The differences in energies are reported
as the IPv. The adiabatic ionization potentials (IPa) were calculated as
the difference in energy between the geometry-optimized amines and
the corresponding geometry-optimized aminyl radical cations.

EC-ESI/MS System.The EC-ESI/MS system was setup as previ-
ously reported30 with the following modifications: Samples (100µM
in 50% MeOH, 50% 10 mM aqueous ammonium formate) were infused
through an ESA Coulochem 5011 analytical cell (ESA Inc., Bedford,
MA) by a syringe pump at a flow of 5µL/min. A makeup flow of 50
µL/min (50% MeOH, 50% aqueous 10 mM ammonium formate) was
added prior to the electrochemical cell by a Hewlett-Packard HP1050
pump (Palo Alto, CA) giving a total flow of 55µL/min through the
electrochemical cell. The electrochemical cell was controlled by an ESA

(24) De Meijere, A.; Chaplinski, V.; Gerson, F.; Merstetter, Pl; Haselbach, E.
J. Org. Chem.1999, 64, 6951. De Meirere, A.; Chaplinski, V.; Winsel,
H.; Kusnetsov, M. A.; Rademacher, P.; Boese, R.; Haumann, T.; Traette-
berg, M.; Schleyer, P. von R.; Zywietz, T.; Jiao, H.; Merstetter, P.; Gerson,
F. Angew. Chem., Int. Ed.1999, 38, 2430.

(25) Wang, Y.; Luttrull, D. K.; Dinnocenzo, J. P.; Goodman, J. L.; Farid, S.;
Gould, I. R. Photochem. Photobiol. Sci.2003, 2, 1169. Shaffer, C. L.;
Morton, M. D.; Hanzlik, R. P.J. Am. Chem. Soc.2001, 123, 8502. Loeppky,
R. N.; Elomari, S.J. Org. Chem. 2000, 65, 96. Ha, J. D.; Lee, J.; Blackstock,
S. C.; Cha, J. K.J. Org. Chem. 1998, 63, 8510. Musa, O. M.; Horner, J.
H.; Shahin, H.; Newcomb, M. J.J. Am. Chem. Soc. 1996, 118, 3862.

(26) Bouchoux, G.; Alcaraz, C.; Dutuit, O.; Nguyen, M. T.J. Am. Chem. Soc.
1998, 120, 152. Nguyen, M. T.; Creve, S.; Ha, T.-Y.Chem. Phys. Lett.
1998, 294, 90.

(27) Gessner, W.; Brossi, A.; Shen, R. S.; Fritz, R. R.; Abell, C. W.HelV. Chim.
Acta 1984, 67, 2037.

(28) Wu, E. Y.; Chiba, K.; Trevor, A. J.; Castagnoli, N., Jr.Life Sci.1986, 39,
1695.

(29) Hall, L.; Murray, S.; Castagnoli, K.; Castagnoli, N., Jr.Chem. Res. Toxicol.
1992, 5, 625.

(30) Jurva, U.; Wikstro¨m, H. V.; Weidolf, L.; Bruins, A. P.Rapid Commun.
Mass Spectrom.2003, 17, 800. Jurva; U.; Bruins; A. P.; Wikstro¨m, H. V.
Rapid Commun. Mass Spectrom.2000, 14, 529.

Table 1. Observed Initial Aminyl Substrate Oxidation Potentials and Calculated Ionization Potentials and Bond Lengths for Aminyl
Substrates and Corresponding Radical Cations

bond lengths (Å) of the geometry optimized
substrates and radical cations

substrate/
radical
cation

initial
oxidation
potentiala

IPV

(eV)
IPA

(eV) aminyl substrates aminyl radical cations

N-C1 C1-C2 C2-C3 C1-C3 N-C1 C1-C2 C2-C3 C1-C3
16/16•+ 650 7.00 6.33 1.44 1.45
19/19•+ 350 6.97 6.03 1.43 1.49 1.50 1.50 1.42 1.53 1.48 1.50
20a/20a•+ 240 6.97 5.91 1.43 1.50 1.50 1.50 1.41 1.54 1.48 1.52
21/21•+ 40 6.95 4.74 1.43 1.50 1.50 1.50 1.27 2.43 1.51 1.50

a The potential at which the ion intensity of the substrate started to decline.
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Coulochem II potentiostat (ESA Inc., Bedford, MA). The ESA working
electrode was porous graphite, and all reported cell potentials are
measured vs a palladium reference electrode. The potentiostat was
programmed to perform a scan from 0 to+1500 mV at a scan rate of
2 mV/s. The outlet from the ESA cell was connected to a Finnigan
TSQ7000 triple stage quadrupole mass spectrometer (Finnigan MAT,
San Jose, CA) equipped with an electrospray interface. Full scan spectra
were acquired continuously. The delay between the electrochemical
cell and the mass spectrometer was determined to be 45 s as follows:
at a continuous flow of 1-cyclopropyl-1,2,3,6-tetrahydropyridine (19),
a potential step from 0 to+650 mV was performed at the same time
that the mass spectrometer was started and the delay time (45 s) for
the appearance of the decyclopropylated product30H+ was noted.
Spectra could be assigned to any given potential, and the signals from
the different oxidation products could be extracted from the full scan
data files and plotted against the potential. Samples prepared for analysis
by LC-ESI/MS/MS were infused through the electrochemical cell at
the desired fixed potential. The collected perfusates (200µL) were
diluted with 800µL of 10 mM formic acid, and 20 to 30µL aliquots
were injected onto the LC-ESI/MS/MS system.

LC-ESI/MS/MS. A Hewlett-Packard HP1050 HPLC system (Palo
Alto, CA) was used for injection of samples onto a reversed-phase
HPLC column (ACE 3, C18, 2.1 mm× 75 mm). The HP1050 pump
was programmed to deliver a gradient composed of MeOH and 10 mM
formic acid in water at a total flow of 200µL/min. The initial gradient
(10% MeOH) was increased linearly to 90% MeOH over a period of
15 min. The mobile phase then was brought back to 10% MeOH using
a linear gradient. The system was allowed to equilibrate for at least 10
min between the injections.

trans- and cis-1-(2-Methylcyclopropyl)-4-phenyl-1,2,3,6-tetrahy-
dropyridinium Oxalate [20aH +‚HOOCCOO- and 20bH+‚-
HOOCCOO-]. To a solution of 1-formyl-4-phenyl-1,2,3,6- tetrahy-
dropyridine31 (3.0 g, 16 mmol) in dry THF (150 mL), Ti(iOPr)4 (5.2
mL, 18 mmol) was added dropwise, at room temperature, followed by
n-propylmagnesium chloride (20 mL of a 2.0 M solution in diethyl
ether). The reaction mixture was stirred under reflux for 18 h during
which time it slowly turned black. After cooling to room temperature,
a saturated aqueous solution of ammonium chloride was added. The
inorganic salts were filtrated, and the reaction mixture was extracted
with ether (3× 20 mL). The combined organic layers were washed
with brine (2× 15 mL) and dried over Na2SO4, and the solvent was
removed under reduced pressure to give an oily mixture of thetrans-
(20aH+) and cis- (20bH+) isomers (2.7 g, 80%). The isomers were
separated by neutral alumina chromatography with hexanes/EtOAc (97:
3). The oxalate salts, obtained by adding a saturated ethereal solution
of oxalic acid to an ethereal solution of the separated free bases, were
recrystallized from MeOH/ether to give20aH+‚HOOCCOO- as a
white, crystalline solid: mp 179-180°C; 1H NMR (500 MHz, DMSO-
d6) δ 0.50 (m, 1H), 0.94 (m, 1H), 1.03 (d,J ) 6.5 Hz, 3H), 1.20 (m,
1H), 2.21 (m, 1H), 2.66 (m, 2H), 3.24 (t,J ) 6.0 Hz, 2H), 3.68 (m,
2H), 6.16 (m, 1H), 7.30 (m, 1H), 7.36 (m, 2H), 7.46 (m, 2H);13C NMR
(125.8 MHz, DMSO-d6) δ 12.7, 17.2, 25.5, 45.1, 49.8, 51.7, 119.1,
125.3, 128.1, 129.1, 134.7, 139.7, 164.0. Anal. Calcd for C17H21NO4

(303.37): C, 67.31; H, 6.98; N, 4.62. Found: C, 67.19; H, 6.81; N,
4.50. 20bH+‚HOOCCOO- as a white, crystalline solid: mp 154-
155 °C; 1H NMR (500 MHz, DMSO-d6) δ 0.21 (m, 1H), 0.75 (m,
1H), 0.93 (m, 1H), 1.18 (d,J ) 6.0 Hz, 3H), 2.07 (brs, 1H), 2.57 (m,
2H), 3.00 (m, 2H), 3.45 (m, 2H), 6.17 (m, 1H), 7.26 (m, 1H), 7.35 (m,
2H), 7.45 (m, 2H);13C NMR (125.8 MHz, DMSO-d6) δ 11.7, 12.0,
12.3, 26.7, 42.4, 50.7, 53.0, 121.0, 125.2, 127.8, 129.0, 134.6, 140.2,
162.8. Anal. Calcd for C17H21NO4 (303.37): C, 67.31; H, 6.98; N, 4.62.
Found: C, 66.93; H, 6.95; N, 4.48. An NOE experiment was conducted
to distinguish between the trans and cis isomers: The doublets
corresponding to the signals for the cyclopropylmethyl groups (1.01

and 1.15 ppm) were irradiated. Enhancement of the signal for the C-1
cyclopropylmethide proton (2.19 ppm), which is oriented syn to the
trans-cyclopropylmethyl group, was observed only with irradiation of
the isomer with mp 179-180 °C.

trans-1-(2-Phenylcyclopropyl)-4-phenylpyridinium Perchlorate
(27+‚ClO4

-).11b A solution of 1-(2,4-dinitrophenyl)-4-phenylpyridinium
chloride32 (3.68 g, 10 mmol) andtrans-2-phenylcyclopropylamine (2.74
g, 21 mmol) in anhydrous 1-butanol (60 mL) was heated under reflux
overnight. The solvent was removed under reduced pressure, and water
(200 mL) was added to the residue. The aqueous phase was washed
with CH2Cl2 (5 × 50 mL), and the water was removed under reduced
pressure. The MeOH (50 mL) solution of the residue was dried over
Na2SO4 and clarified with charcoal. After filtration, the solvent was
removed under reduced pressure to give the chloride salt as a yellow
hygroscopic solid (1.78 g, 48%). The solid that was in MeOH (20 mL)
was treated with HClO4 70% (1.5 equiv) in MeOH (1 mL), and ether
was added to give27+‚ClO4

- as white crystals (1.60 g, 43%): mp
167-168 °C; 1H NMR (500 MHz, DMSO-d6) δ 1.85 (m, 1H), 2.21
(m, 1H), 3.07 (m, 1H), 4.66 (m, 1H), 7.34 (m, 5H), 7.66 (m, 3H), 8.11
(m, 2H), 8.49 (d,J ) 6.5 Hz, 2H), 9.17 (d,J ) 6.5 Hz, 2H);13C NMR
(125.8 MHz, CD3OD) δ 16.4, 26.0, 49.6, 124.7, 127.3, 127.5, 128.8,
129.1, 130.3, 132.8, 134.0, 138.8, 145.4, 155.7. Anal. Calcd for C20H18-
ClNO4 (371.82): C, 64.61; H, 4.88; N, 3.77. Found: C, 64.40; H, 4.63;
N, 3.82.

4-Phenyl-trans-1-(2-phenylcyclopropyl)-1,2,3,6-tetrahydropyri-
dinium-2,6-d2 Oxalate [21H+‚HOCCOO--2,6-d2]. To a solution of
4-phenyl-trans-1-(2-phenylcyclopropyl)pyridinium perchlorate27+‚ClO4

-

(594 mg, 1.6 mmol) in MeOH (50 mL) NaBD3CN (428 mg, 6.5 mmol)
was added in small portions. After 1 h atroom temperature, the solvent
was removed under reduced pressure and the residue in water (50 mL)
was extracted with CH2Cl2 (2 × 30 mL). The combined organic layers
were dried over Na2SO4 and filtered, and the solvent was removed under
reduced pressure. The crude product in EtOAc was filtrated through a
short neutral alumina column, and the recovered free base in ether was
treated with a saturated solution of oxalic acid in ether. The resulting
precipitate was collected and recrystallized from MeOH/ether to give
21H+•HOCCOO--2,6-d2 as white crystals (230 mg, 39%): mp 188-
189 °C; 1H NMR (500 MHz, DMSO-d6) δ 1.17 (m, 1H), 1.30 (m,
1H), 2.26 (m, 1H), 2.42 (m, 1H), 2.59 (m, 2H), 3.11 (m, 1H), 3.54 (m,
1H), 6.17 (m, 1H), 7.17 (m, 3H), 7.28 (m, 3H), 7.35 (t,J ) 7.5 Hz,
2H), 7.44 (m, 2H);13C NMR (125.8 MHz, DMSO-d6) δ 14.7, 22.8,
25.7, 47.3, 49.4, 51.4, 119.4, 125.3, 126.6, 126.7, 128.1, 128.9, 129.0,
134.7, 139.8, 140.7, 163.9. Anal. Calcd for C22H21D2NO4 (367.43): C,
71.92; H, 6.86; N, 3.81. Found: C, 71.74; H, 6.55; N, 3.83.

Diastereomeric Mixture of 1-[3-Phenyl-(Z,E)-propenylidinyl]-4-
phenyl-1,2,3,6-tetrahydropyridinium Perchlorate (45+‚ClO4

-) and
1-[3-Phenyl-(E,E)-propenylidinyl]-4-phenyl-1,2,3,6-tetrahydropyri-
dinium perchlorate (48+‚ClO4

-). To a solution of theN-oxides46/
47 (39 mg, 0.13 mmol) in CH2Cl2 (1 mL) TFAA (90 mL, 0.65 mmol)
was added dropwise at 0°C. After 30 min, 70% HClO4 (0.2 mmol) in
MeOH (0.1 mL) was added followed by addition of ether. The
precipitate was recrystallized from MeOH to give a mixture of
45+•ClO4

- and48+•ClO4
- as light yellow crystals (30 mg, 62%): mp

213 °C (dec); UV-vis (CH3CN): λmax 333 nm,ε 30 620;1H NMR
(500 MHz, DMSO-d6) δ 2.92 (m, 4H), 4.26 (m, 2.4H), 4.46 (m, 1.6H),
4.78 (m, 1.6H), 4.91 (m, 2.4H), 6.28 (m, 2H), 7.34-8.00 (m, 24H),
8.90 (m, 2H);13C NMR (125.8 MHz, DMSO-d6) δ 27.7, 27.8, 47.9,
49.5, 55.2, 56.7, 117.5, 117.7, 118.1, 118.7, 125.5, 125.6, 128.5, 129.2,
129.5, 130.0, 130.9, 133.8, 133.9, 134.4, 134.5, 135.3, 139.0, 139.1,
160.1, 160.4, 168.9, 169.3. Anal. Calcd for C20H20ClNO4 (373.83): C,
64.26; H, 5.39; N, 3.75. Found: C, 64.08; H, 5.38; N, 3.75. The1H
NMR spectrum of a solution of this product (5 mg) in DMSO-d6 (0.75
mL) containing D2O (0.l mL) established that the starting enimiunium

(31) Kuttab, S.; Mabic, S.J. Labelled Compd. Radiopharm. 2002, 45, 813.
(32) Genisson, Y.; Mehamandonst, M.; Marazano, C.; Das, B. C.Heterocycles

1994, 39, 811.
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species had hydrolyzed completely after 3 h to give an equimolar
mixture of cinnamaldehyde (32) [δ 7.46 (m, 3H), 7.73 (m, 3H), 8.82
(dd,J ) 7.7, 16.0 Hz, 1H), 9.65 (d,J ) 7.5 Hz, 1H)], and the 4-phenyl-
1,2,3,6-tetrahydopyridinium species30H+ [δ 2.66 (m, 2H), 3.31 (t,J
) 7.0 Hz, 2H), 2.73 (m, 2H), 6.17 (h,J ) 7.0 Hz, 1H), 7.31 (m, 1H),
7.37 (m, 2H), 7.46 (m, 2H)]. Similarly, the ESI/MS spectrum of the
eniminium mixture in 50:50 MeOH/10 mM aqueous ammonium
formate (MH+, m/z 274) after standing 5 h showed the complete
conversion to theN-dealkylated compound30H+ (MH+, m/z 160),
which was identified by comparing the corresponding PIS [MH+, m/z
160 (25%), 30 (100%)] with that of an authentic sample30H+‚Cl-,
and cinnamaldehyde, which was identified by UV/vis diode array
analysis as described in the General Methods section.

4-Phenyl-1-trans-(3-phenyl-2-propenyl)-1,2,3,6-tetrahydropyri-
dinium Oxalate (49H+‚HOOCCOO-). Cinnamyl bromide (0.17 mL,
1.2 mmol) was added at room temperature to a mixture of 4-phenyl-
1,2,3,6-tetrahydropyridine (30, 370 mg, 2.3 mmol) and K2CO3 (1.6 g,
12 mmol) in acetone (20 mL). After 12 h, the mixture was filtrated,
the solvent was removed under reduced pressure, and the crude product
was purified by alumina chromatography with hexanes/AcOEt (80:

20). The free base in ether was treated with an ethereal solution of
oxalic acid to give analytically pure49H+‚HOOCCOO- as a white
solid (301 mg, 69%): mp 216-217°C; 1H NMR (500 MHz, DMSO-
d6) δ 2.70 (m, 2H), 3.27 (t,J ) 7.5 Hz, 2H), 3.71 (m, 2H), 3.80 (d,J
) 8.5 Hz, 2H), 6.15 (m, 1H), 6.38 (m, 1H), 6.78 (d,J ) 20 Hz, 1H),
7.35 (m, 10H);13C NMR (125.8 MHz, DMSO-d6) δ 24.8, 48.3, 50.3,
57.5, 118.0, 120.6, 125.2, 127.1, 128.2, 128.8, 128.9, 129.1, 134.4,
136.1, 137.6, 139.1, 164.4. Anal. Calcd for C22H23NO4 (365.43): C,
72.31; H, 6.34; N, 3.83. Found: C, 72.08; H, 6.40; N, 3.79. Treatment
of the eniminium mixture described above (24 mg, 64µmol) with
NaBH4 (24 mg, 0.64 mmol) gave a product that, upon workup, yielded
an oxalate salt (12 mg, 51%) that was shown by mp,1H NMR, and
GC-EI/MS to be identical to49H+‚HOOCCOO-.
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